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ABSTRACT  

To enhance real-time detection of corn breakage rate under dim conditions, this study designed a dual-light 

(top/backlight) sampling system. By comparing four datasets (top-scattered, top-clustered, backlight-scattered, 

backlight-clustered), the algorithm optimized with backlight-scattered data achieved optimal accuracy (79.6%). 

A lightweight YOLOv8n_gcd model was proposed, integrating Ghost convolution in the backbone to reduce 

redundancy, attention mechanisms for feature enhancement, and depthwise separable convolutions in the 

neck. The optimized model reduced FLOPs by 24% and increased FPS by 165%, offering an efficient, low-

cost solution for agricultural quality inspection with theoretical and practical value. 

 

摘要  

为了增强在昏暗条件下玉米破损率的实时检测，本研究设计了一种双光（顶部/背光）采样系统。通过比较四个

数据集（顶光-籽粒分散、顶光-籽粒聚集、背光-籽粒分散、背光籽粒聚集），得出背光籽粒分散的数据优化的

算法达到了最佳（79.6%）之后利用该数据集训练出一种轻量级的 YOLOv8n_gcd 模型，将 Ghost 卷积集成在

骨干网中以减少冗余，将注意力机制用于特征增强，并在颈部进行深度可分离卷积。优化后的模型将 FLOP 降

低了 24%，FPS 提高了 165%，为农业质量检测提供了一种高效、低成本的解决方案，具有理论和实践价值。 

 

INTRODUCTION 

Corn holds the position as the largest - scale grain crop in China (Cui et al., 2019). With the progressive 

development of agricultural mechanization, the mode of corn harvesting in China is undergoing a significant 

transition from ear - based harvesting to direct kernel – harvesting (Li, 2017; Zhao et al., 2020). This shift in 

the harvesting method represents a crucial step in modernizing corn production, enabling a more efficient and 

cost-effective approach. It has thus become an inevitable trend in the mechanized production of corn in the 

country (Zhu et al., 2021). The operational quality of corn harvesting exerts a profound impact on both its yield 

and economic value. The breakage rate and impurity content serve as pivotal metrics for evaluating the 

performance of direct - kernel harvesters (Zhao et al., 2025; Cui Y.S., 2024; Yang et al., 2018). However, the 

traditional manual detection method is fraught with limitations. It is characterized by high labor intensity and 

low detection efficiency, which not only burdens the workforce but also fails to provide real-time and accurate 

feedback of the breakage rate and impurity content to the automatic control system of the harvester. As a 

result, timely adjustments to the operation parameters cannot be made, leading to potential substantial 

harvesting losses (Xu et al., 2021; Wu et al., 2024). This in turn has significantly impeded the advancement of 

intelligent harvesting technologies for domestic corn direct - kernel harvesters.  

 Convolutional Neural Networks (CNvolutional Neural Networks, CNNs) in deep learning have 

demonstrated exceptional performance improvements in cutting-edge fields such as object recognition, image 

classification, and image segmentation.  
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 Liu et al. showed significant advantages in training multi-scale image input models compared to single-

scale scene classification strategies (Lui et al., 2018). Since the introduction of ResNet, residual networks have 

successfully addressed the long-standing vanishing gradient problem enabling unrestricted network depth and 

garnering widespread attention in computer vision (He et al., 2016). However, deep learning-based image 

classification tasks often suffer from excessive parameters and bulky models, posing challenges for 

deployment on mobile devices. To address this, Andrew et al. proposed MobileNets, a lightweight 

convolutional neural network that achieves efficient computation on mobile and embedded systems while 

reducing memory consumption, thereby streamlining model parameters and computational load (Howard et 

al., 2017). However, this simplification comes at the cost of some accuracy loss. In MobileNetV2, Mark et al. 

introduced an inverted residual structure, achieving higher accuracy with the same computational cost while 

minimizing information loss (Sandler et al., 2018).  

In the field of damaged corn kernel identification, Velesaca et al. proposed a two-stage static detection 

algorithm for corn kernel breakage (Velesaca et al., 2020). This method first segments individual kernels from 

clustered corn images using Mask R-CNN, then classifies them via a custom-designed network (CK-CNN). 

Han et al. introduced an independent component analysis (ICA)-based method for germ feature detection, 

selecting germ-representative components from RGB color space and integrating nine additional germ-area 

features, yielding a minimal area error of 0.7% compared to manual inspection (Han et al., 2010). Li et al. 

developed an image acquisition device and an improved YOLOv4-tiny model for broken kernel detection, 

achieving 93.5% and 93% precision for intact and damaged kernels, respectively, with lower detection error 

than manual methods, demonstrating real-time applicability (Li et al., 2021). Xu et al. selected corn varieties 

Denghai 518, Xundan 20, and Zhengdan 958, constructing a CNN model using the Keras deep learning 

framework, achieving an average recognition rate of 95.49% (Xu et al., 2020). Quan et al. investigated corn 

kernel selection and classification, developing a lightweight convolutional neural network. By optimizing 

prototype parameters, they achieved optimal performance with a detection accuracy of 96.50% and an 

effective sorting rate of 97.51% for four categories of kernels (high-quality, rejected, germ-side, and 

endosperm-side) (Quan et al., 2020). 

 As mentioned earlier, it is necessary to research an algorithm that is adaptable to dark conditions and 

is lighter and easier to deploy on mobile devices. 

 

DUAL LIGHT DEVICE DESIGN 

Lighting System Design  

 To address image acquisition challenges in low-light environments, this study designed a dual-light 

system with engineered multi-angle coordination (upper and lower illumination). Comparative experiments 

were conducted using datasets under distinct lighting conditions to evaluate optimal angles for image capture. 

Hybrid-angle lighting (simultaneous upper/lower illumination) was excluded to ensure experimental 

comparability. The core light source is the Leichu Lighting 600×600 direct-emitting LED panel which named 

Model LZ-600D, whose technical specifications are compared with industry standards in Table 1.  

 
Table 1 

Comparison of Main Light Source Technical Parameters and Industry Standards 

Parameter 
Light emission 

type 

Rated 
power 
 [W] 

Luminous 
flux  
[lm] 

Illuminance 
uniformity 

 [%] 

Color 
temperature 

 [K] 

Color 
Rendering 
Index (CRI) 

Leichu 
600×600 LED 

Panel 

COB-integrated 
direct/edge-lit 

80 9,600 
92 (at 0.5 m 

distance) 
6,500 ± 200 Ra ≥ 96 

Industry 
Standard 
(Industrial 

Grade) 

Direct/edge-lit 50–100 8,000–12,000 ≥85 
5,000–6,500 

(recommended) 

Ra ≥ 90 (for 
precision 

inspection) 

 

Mechanical Structure and Optical Layout 

A modular dark chamber (80 cm × 50 cm × 50 cm) was constructed to simulate post-threshing conditions 

(ambient light <10 lux). The chamber’s interior was coated with black light-absorbing paint (reflectivity <2%), 

and labyrinthine light seals (attenuation >99%) were installed at joints to eliminate stray light interference. A 

circular aperture (8 cm diameter) was integrated at the top for imaging. 
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The lighting system comprised two configurations (Fig. 2): 

Top Lighting: A ring-shaped array of 24 COB LED modules (3W each) with a three-layer homogenizing 

structure (diffuser plate, micro-prism film, anti-glare mesh) to reduce illuminance gradients to <5%. 

Backlighting: An identical LED array and homogenizer positioned at the chamber base to create a planar 

light source. 

A co-axial optical path (light source–camera–sample alignment) was implemented to minimize edge 

shadows and ensure accurate kernel morphology recognition. 

 
Fig. 2 – Schematic layout of the sampling device 

Imaging System Design 

The imaging system featured: 

1) Camera: A Sony IMX800 image sensor (1/1.49", 54 MP) with 82% quantum efficiency at 550 nm, 

readout noise of 2.3e⁻, and dynamic range of 73 dB. 

2) Lens: A Computar MLH-10X fixed-focus lens (25 mm focal length, f/2.8 aperture). 

3) Stage: A three-axis precision stage with ±50 mm horizontal range, <0.01 mm repeatability, and 

vertical electric focusing (0–100 mm travel). A laser rangefinder (0.1 mm accuracy) and dual-axis gimbal (15° 

pitch, 10° roll correction) were integrated to mitigate mechanical misalignment and vibration-induced imaging 

errors. 

 

MATERIALS AND METHODS 

Target Materials 

The corn kernels harvested in the Northeast region of China during late September 2024 were chosen 

as the representative samples for this study. Two distinct types of corn kernels were the focus of detection: 

intact corn kernels, as illustrated in Fig. 3 (a), and damaged corn kernels, as shown in Fig. 3 (b). 

 

          

(a)                        (b) 

Fig. 3 – Types of corn kernels 

a) Complete corn kernels; b) Damaged corn kernels 

 

During the corn - threshing process, kernel damage can occur due to multiple factors. Mechanically, the 

use of certain threshing machines, such as those equipped with round - headed spike - tooth mechanisms, 

can cause physical damage to the kernels. Additionally, improper operational practices, including sub-optimal 

moisture content levels (either too high or too low) and uneven feeding of corn materials into the threshing 

machine, can also contribute to kernel breakage. 
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Image Acquisition 

Image collection was conducted within the established image - acquisition system. Initially, the 

enclosure of the system was opened, and the corn kernels designated for imaging were carefully placed inside. 

Subsequently, the enclosure was sealed to create a controlled, relatively dark environment that mimics the 

real-world conditions of post-threshing. Depending on the experimental setup, either the top - light or the back 

- light was activated. The height of the camera was then adjusted until the entire area of the corn kernels was 

within the field of view. For each batch of corn kernels, two images were captured: one with the top - light 

illumination and another with the back - light illumination. After image acquisition, the corn kernels were 

replaced, and the process was repeated. In total, 684 image pairs were collected. 

Typically, the quality of the dataset significantly influences the predictive performance of subsequent 

deep - learning algorithms. To enhance the generalization and robustness of the network model, conventional 

data - augmentation techniques, such as noise injection, exposure adjustment, horizontal and vertical flipping, 

and random rotation, are often employed. However, in this experiment, the primary objective was to compare 

the efficacy of top - light and back - light illumination for detecting damaged corn kernels. Therefore, data - 

augmentation techniques were not applied to maintain the integrity of the original lighting - condition data. 

 

Fig. 4 – Sample images collected during the experiment 

 

Image Calibration and Processing 

After image acquisition, the datasets were categorized into four classes: top-scattered, top-clustered, 

backlight-scattered, and backlight-clustered. Subsequently, images within each subfolder were partitioned into 

training, validation, and test sets at a ratio of 6:2:2 to ensure balanced data distribution. 

The images in each set were then imported into the Labelling software, a widely - used tool in the 

field of image recognition for manual annotation. In this study, the only objects of interest were intact and 

damaged corn kernels. Therefore, only these two types of kernels were annotated within the images, enabling 

the training of the subsequent detection algorithm. 

 
Fig. 5 – Example of an image being annotated in the Labelling software 
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ALGORITHM OPTIMIZATION AND TRAINING 

YOLOv8 Model 

Given the real-world application scenario of detecting damaged corn kernels, the YOLOv8n 

algorithm was selected for this study.  

Renowned for its high - speed and efficient object - detection capabilities, YOLOv8n has found 

extensive applications across various domains. It is a component of the YOLOv8 network model, which 

supports multiple computer - vision tasks, including image classification, object detection, and instance 

segmentation. The YOLOv8 architecture consists of five main components: Input, Backbone, Neck, Head, and 

Output. 

Compared to the full - scale YOLOv8 model, YOLOv8n has a more streamlined architecture with 

fewer model parameters and reduced computational requirements. This makes it particularly suitable for 

deployment in resource - constrained environments while still maintaining a relatively high detection speed. 

Despite its lightweight design, YOLOv8n can achieve competitive accuracy in object - detection tasks. 

 

GhostNet 

The backbone network architecture of the YOLOv8 model utilizes CSPDarknet. The significant depth 

and width of this backbone network, while suitable for high precision, incur high computational costs that 

degrade YOLOv8's overall detection speed. To address this limitation, this chapter introduces the lightweight 

network GhostNet, replacing the CSPDarknet in YOLOv8 with the hierarchical structure of GhostNet. 

 
Fig. 6 – Ghost Convolution Process 

CBAM Attention Mechanism 

When detecting damaged corn kernels, the input images often contain not only the target objects but 

also substantial complex background information. The deep architecture of YOLOv8, after undergoing multiple 

convolutional layers, tends to neglect critical target feature information while disproportionately focusing on 

background features. To address this issue, this chapter integrates a spatial-channel combined attention 

mechanism—Convolutional Block Attention Module (CBAM) (Woo et al., 2018)—into the backbone network of 

YOLOv8. This mechanism aims to enhance the network's ability to precisely localize regions of interest (ROIs) 

and suppress the influence of background noise in remote sensing images. The core principle of the attention 

mechanism lies in dynamically amplifying the saliency of specific spatial and channel-wise features within input 

images, thereby refining the extraction of key discriminative features for improved detection accuracy. 

 
Fig. 7 – CBAM Attention Mechanism 

 

Depthwise Separable Convolution 

To further enhance the detection accuracy of the model, an attention mechanism can be introduced 

in the backbone of the original network. However, the attention mechanism may negatively impact inference 

speed. Therefore, Depthwise Separable Convolution (DWConv) is incorporated into the neck for localized 

optimization (Woo et al., 2018).  
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In the modified YOLOv8 model, standard convolutions in the backbone network are replaced with 

DWConv. The computation is divided into two steps: depthwise convolution (applying a single filter per input 

channel) followed by pointwise convolution (combining outputs across channels via 1×1 convolutions). 

Compared to standard convolutions, this approach drastically reduces computational complexity and 

accelerates model inference speed. The structure of this modification is illustrated in Fig. 8. 

 
Fig. 8 – Depth Separable Convolutional Structure 

 

MODEL TRAINING AND RESULT ANALYSIS 

Training Environment 

The experimental setup was configured with a 64 - bit Windows 10 operating system. The hardware 

specifications included a 12th - generation Intel(R) Core (TM) i7 - 12700KF CPU operating at a base frequency 

of 3.61 GHz, 32 GB of RAM, and an NVIDIA 3080Ti graphics processing unit (GPU) with 12 GB of dedicated 

video memory. The deep - learning framework employed was Python 3.11.0, in conjunction with Cuda 12.4 for 

GPU - accelerated computations. Python 3.8.0 was used as the programming language, and the development 

environment was PyCharm Community Edition. 

Evaluation Indicators 

In the process of model training, two key performance indicators, precision and recall, play a vital role 

in assessing the algorithm's effectiveness. Precision measures the proportion of correctly identified positive 

samples among all samples predicted as positive, while recall represents the proportion of correctly identified 

positive samples among all actual positive samples. The mathematical formulas for calculating precision (P) 

and recall (R) are as follows: 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                   (1) 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                   (2) 

where: TP (True Positive) refers to positive samples that are correctly classified as positive; TN (True Negative) 

represents negative samples that are correctly classified as negative; FP (False Positive) denotes negative 

samples that are incorrectly classified as positive; and FN (False Negative) indicates positive samples that are 

incorrectly classified as negative. 

Mean Average Precision (MAP) is another crucial metric for evaluating the overall performance of the 

network model. It provides a comprehensive measure of the model's accuracy across different confidence 

thresholds. The formula for calculating MAP is as follows: 

𝐴𝑃 = ∫ 𝑝(𝑟)
1

0
𝑑𝑟                                (3) 

𝑀𝐴𝑃 =
∑ 𝐴𝑃𝑖
𝑘
𝑖=1

𝑘
                                 (4) 

where: AP (Average Precision) represents the average precision for a specific class of objects; and k is the 

total number of classes in the dataset. 
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In this experiment, four evaluation metrics were utilized to analyze the experimental results and 

compare them with the baseline network performance. These metrics include MAPb50 - 95, MAPm50 - 95, 

computational complexity, and inference time. The notation 50 - 95 represents the average MAP calculated at 

different Intersection over Union (IoU) thresholds, ranging from 50% to 95% with a step size of 5%. 

 

Comparative experiment of datasets from different perspectives 

To determine which lighting angle, top - light or back - light, is more suitable for detecting damaged 

corn kernels in real-world scenarios, the YOLOv8n algorithm was trained using four different datasets: top-

scattered, backlight-scattered, top-clustered, and backlight-clustered. All training was conducted under 

identical experimental conditions, using the hyperparameters tuned from the original model and maintaining 

consistent training epochs and learning rates. The experimental verification results are presented in Table 2. 

Table 2  
Verification results of algorithms trained with different datasets 

datasets Precision/% Recall/% mAP0.5～0.95（%） FPS/F·s-1 

Top-scattered 89.8 67 70.7 35 

Top-clustered 76.6 77.7 61.4 39 

Backlight-scattered 85.7 70.6 79.6 31 

Backlight-clustered 80.6 74.1 75.4 30 

 

As indicated by the data in Table 2, the Dispersal in the Backlight dataset performs the best, along 

with the fastest recognition speed. Through horizontal comparison, it was evident that discrete-kernel datasets 

were more conducive to training, resulting in more accurate models. Moreover, back-light-illuminated datasets 

generally outperformed top-light-illuminated datasets in terms of training efficiency and model accuracy, 

Therefore, backlight-scattered dataset was used to train the improved algorithm model. 

Data Enhancement 

After identifying the backlight-scattered dataset as the optimal training dataset, data preprocessing 

was performed to enhance sample diversity and enable the network to learn features from multiple 

perspectives before feeding it into the training pipeline. This process improves the model's ability to analyze 

feature data and strengthens its generalization capability. Data augmentation techniques—such as rotation, 

flipping, blurring, and brightness adjustment—were performed on the dataset samples, as illustrated in Fig. 9. 

 
Fig. 9 – Data enhanced image 

RESULTS 

Ablation Experiment 

To verify the effectiveness of the improvements proposed in this article, ablation experiments were 

conducted to validate the effectiveness of each part. The experimental results are shown in Table 3, where 

YOLOv8n_g represents the use of Ghost convolution on the basis of YOLOv8n, YOLOv8n_gc represents the 

use of attention mechanism on the basis of YOLOv8n_g, and YOLOv8n_gcd represents the addition of 

depthwise separable convolution on the basis of YOLOv8n_gc. Compared to YOLOv8n GFLOPS, YOLOv8n_g 

has decreased from 8.1 to 5.9, the model's accuracy mAP has decreased from 86.6% to 84.6%, and FPS has 

increased from 43 to 68. Although using Ghost convolution can significantly improve the model's detection 

efficiency, it will result in a loss of accuracy.  
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Compared to YOLOv8n_g, YOLOv8n_gc showed a 0.9 percentage point increase in accuracy and 

an 8% decrease in FPS with a 0.2 increase in GFLOPS. The attention mechanism can enhance the model's 

feature extraction ability for targets and improve detection accuracy. Compared to YOLOv8n_gcd, 

YOLOv8n_gcd reduces computational complexity by 7.97%, increases detection speed by 11fps, and reduces 

mAP value by 1.05%. Compared to YOLOv8n, YOLOv8n_gcw significantly improves FPS by 60% while slightly 

reducing model accuracy. 

Table 3  
Results of ablation experiment 

Model Ghost CBAM DWConv GFLOPs FPS mAP 

YOLOv8n - - - 8.1 43 86.6% 

YOLOv8n_g √ - - 5.9 68 84.6% 

YOLOv8n_gc √ √ - 6.1 60 85.5% 

YOLOv8n_gcd √ √ √ 6.1 71 84.95% 

 

The specific training dynamics of the YOLOv8n_gcw model are illustrated in Fig. 10. By observing 

the mAP@50 and mAP@50-95 metrics in Figure 10, it is evident that the model's average precision values 

stabilize around the 200th epoch, with no significant improvement thereafter. This indicates that the model has 

converged to its optimal state and does not benefit from further training iterations. 

Concurrently, the evaluation metrics for Precision and Recall also exhibit stable and unchanging 

trends at this stage, suggesting that the model has achieved an optimal balance between detecting true 

positives and minimizing false positives/negatives. Therefore, additional training epochs are unnecessary, as 

they would not yield meaningful performance gains. 

 
Fig. 10 – YOLOv8n_gcd Training Process Diagram. 

Contrast Test 

To further demonstrate the effectiveness of the algorithm presented in this chapter, comparative 

experiments were conducted against classical deep learning object detection algorithms, including Faster R-

CNN, SSD, and YOLOv7 (Wang et al., 2023). The experimental results are shown in Table 4. 

 
Table 4  

Comparative experiment of different object detection algorithms 

Model GFLOPs mAP@0.5 Precision Recall 

Faster-RCNN 227.8 80.6% 81.8% 74.6% 

SSD 63.14 78.6% 79.1% 70.9% 

YOLOv7 105.4 81.5% 82.4% 73.5% 

YOLOv8n_gcd 6.1 84.95 84.8% 76.2% 
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The experimental results in Table 4 clearly demonstrate that the optimized model proposed in this 

study achieves significantly superior performance in reducing floating-point operations (FLOPs), with its FLOPs 

far lower than those of the other three benchmark models. In other aspects, compared to Faster R-CNN, SSD, 

and YOLOv7, the optimized model exhibits improvements in precision by 3%, 5.7%, and 2.4%, respectively; 

recall by 1.6%, 5.3%, and 2.7%, respectively; and mean average precision (mAP@0.5) by 4.35%, 6.35%, and 

3.45%, respectively. Notably, the YOLOv8n_gcd model maintains a compact architecture with reduced 

computational demands, enabling rapid deployment on resource-constrained platforms. These enhancements 

collectively validate the superior performance and broad applicability of the proposed improved model in real-

world applications. 

 

CONCLUSIONS AND DISCUSSIONS 

This study designed a dual-light device to collect datasets, generating four distinct datasets: top-

lighting-dispersed, top-lighting-aggregated, backlighting-dispersed, and backlighting-aggregated, which were 

used to train the same algorithm. The results revealed that the backlighting-dispersed dataset achieved the 

highest accuracy and was most suitable for training. Building on this, an optimized YOLOv8-based model, 

termed YOLOv8n_gcd, was proposed. This model integrates Ghost convolutions into the backbone network 

to minimize redundant computations, incorporates attention mechanisms to enhance feature extraction for 

damaged regions, and replaces standard convolutions with depthwise separable convolutions in the Neck 

section. These localized optimizations achieve a balance between accuracy and lightweight efficiency. 

Comparative experiments demonstrated that the YOLOv8n_gcd model outperforms Faster R-CNN, SSD, and 

YOLOv7, with precision improvements of 3%, 5.7%, and 2.4%, recall improvements of 1.6%, 5.3%, and 2.7%, 

and mAP@0.5 gains of 4.35%, 6.35%, and 3.45%, respectively. Notably, the optimized YOLOv8s model 

retains a compact architecture with significantly reduced computational demands, enabling rapid deployment 

on resource-limited platforms. These advancements in precision, speed, and robustness validate the 

superiority and broad applicability of the proposed model in practical agricultural scenarios, offering a high-

performance solution for real-time quality inspection tasks while maintaining adaptability to industrial 

constraints. 
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